metal atomization systems Specifications

Table of Contents

Metal atomization is a process used to produce fine metal powders for various applications. It involves melting metal and then breaking it into fine droplets using gas or centrifugal force. The droplets rapidly solidify into powder particles. Metal atomization systems are the equipment used to carry out this process efficiently on an industrial scale.

Overview of Metal Atomization Systems

AspectDescription
FunctionMetal atomization systems are the workhorses behind the production of fine metal powders. These systems break down molten metal into tiny droplets using high-pressure gas, water, or a combination of both. The resulting powder particles, typically ranging from 5 to 150 microns, boast specific characteristics and precise sizes crucial for various industrial applications.
Process Breakdown1. Melting: The process begins with the chosen metal feedstock, which can be virgin material, scrap, or a pre-alloyed blend. This material is melted inside a furnace, most commonly using induction or electric arc technologies.
2. Atomization: The molten metal stream is then forced through a nozzle. Here, it encounters a high-velocity jet of gas, water, or both, depending on the desired powder properties and system type. The high-pressure jet disrupts the metal stream, shattering it into fine droplets.
3. Solidification: As the atomized droplets fall through a dedicated chamber, they rapidly solidify due to their small size and increased surface area exposed to the cooling environment.
4. Classification and Collection: The cooled metal powder is then classified to achieve the desired particle size distribution. Finally, the powder is collected for further processing or storage.
System TypesThere are two primary categories of metal atomization systems: Gas Atomization and Water Atomization. Gas atomization utilizes inert gases like argon or nitrogen to break up the melt stream. This method is ideal for producing high-purity powders with spherical shapes, making them perfect for Additive Manufacturing (AM) applications. Water atomization, on the other hand, uses high-pressure water jets for atomization. This technique is more cost-effective and results in irregularly shaped particles. Water-atomized powders are commonly used in Powder Metallurgy (PM) processes for applications like bearings and gears.
Key ConsiderationsSeveral factors influence the selection of a metal atomization system. The desired powder properties, such as particle size, shape, and chemistry, are paramount. Additionally, the type of metal being processed and the production volume requirements play a significant role. System operating costs, including energy consumption and maintenance needs, must also be factored in.
BenefitsMetal atomization offers several advantages over traditional metalworking methods. It enables the creation of powders with tailored properties, promoting the development of new materials and advanced manufacturing processes. Additionally, atomization allows for near-net-shape manufacturing in AM, minimizing material waste. Furthermore, this technology facilitates the recycling of metal scrap back into valuable powders, promoting sustainability in the manufacturing sector.
metal atomization systems

Types of Metal Atomization Systems

SystemDescriptionAdvantagesDisadvantagesApplications
Gas AtomizationInert gas (usually argon) is used to break up a molten metal stream into fine droplets.Produces spherical powders with high flowability
Lower oxygen content in the powder
Suitable for a wide range of metals and alloys
Slower production rates compared to water atomization
Higher energy consumption
Limited control over particle size distribution at finer end
Additive manufacturing (3D printing)
Thermal spraying
Metal injection molding (MIM)
Water AtomizationHigh-pressure water jets break down molten metal into droplets.Faster production rates and lower cost
Suitable for high-volume applications
Can achieve finer particle sizes
Higher oxygen content in the powder due to interaction with water
Irregular powder shapes with satellites (molten droplets attached)
Limited to specific metals (typically aluminum and steel)
Metal injection molding (MIM)
Friction welding
Parts with lower structural requirements
Rotary AtomizationMolten metal is poured onto a high-speed rotating disc, which flings the metal into droplets due to centrifugal force.Produces near-spherical powders with good flowability
Can achieve a wider range of particle sizes compared to gas atomization
Limited to low melting point metals (typically aluminum and magnesium)
Higher energy consumption compared to water atomization
Potential for splashing and safety concerns
Plasma AtomizationInert gas is ionized into plasma using an electric arc, creating a high-temperature and high-velocity stream that breaks up molten metal.Suitable for processing reactive and high melting point metals
Can achieve very fine and uniform particle sizes
Lower oxygen content compared to water atomization
High capital and operating costs
Complex process requiring specialized equipment and expertise
Additive manufacturing (3D printing) for high-performance alloys (e.g., titanium, nickel superalloys)
Gas turbine components
Aerospace parts
Plasma Rotating Electrode Process (PREP)A variant of plasma atomization where a consumable electrode is melted by the plasma torch and the molten metal is centrifugally ejected into droplets.Combines the advantages of plasma atomization and rotary atomization
Achieves high powder yields and good control over particle size and morphology
Extremely high capital and operating costs
Limited commercial availability
Additive manufacturing for high-value and specialty alloys

Metal Atomization System Design

The major components of a typical gas atomization system are:

Gas Atomization System Design

ComponentDetails
Melting UnitInduction melting crucible, capacity 50-2000 kg
Nozzle AssemblyMultiple close-coupled nozzles, 2-5 mm diameter
Melt SuperheatingNitrogen/argon injected to superheat melt
Atomization ChamberWater-cooled, 3-5 m height
Gas SupplyNitrogen/Argon, 50-100 bar pressure
Cyclone SeparatorsMultiple cyclones in series for powder collection
Final FiltersBaghouse, cartridge filters

The nozzle design and number is important for achieving the desired fine powder particle size distribution. The height of the atomization chamber allows time for the droplets to solidify before collection.

High grade industrial gases like nitrogen or argon are supplied from compressed gas cylinders or on-site generators. Their pressure and flowrate determines the droplet size.

Metal Atomization System Specifications

Typical specifications for industrial scale gas atomization systems are:

Metal Atomization System Specifications

ParametersSpecifications
Production Capacity10 kg/hr to 5000 kg/hr
Particle Size10 – 150 microns
Metal TypesNickel, iron, cobalt, copper alloys
Melting Temperature1600 °C max
Gas Pressure10 – 100 bar
Cooling Rate104 – 106 K/s
Powder Purity99.5%
Nozzle DesignAnnular slit, discrete jet
Atomization GasNitrogen, Argon

The capacity depends on the crucible size and varies from lab/pilot scale 10 kg/hr to large scale 5000 kg/hr systems. Mostly nickel, iron, and cobalt alloys are atomized but other metals like aluminum, copper alloys are also processed.

High gas pressure and fast cooling rates ensure fine microscopic powder particles in the 10-150 micron size range. Powders with 99.5% purity can be obtained.

Metal Atomizer System Applications

Some major applications of metal powder produced from atomization include:

Metal Powder Applications

IndustryApplications
AerospaceTurbine blades, discs
AutomotiveSintered parts, filters
ElectronicsChip resistors, conductors
Additive Manufacturing3D printing powders
ChemicalCatalysts, pigments
BiomedicalImplants, prosthetics

In the aerospace industry, nickel and titanium alloy powders are used to produce turbine blades and discs with complex shapes by powder metallurgy. Automotive industry uses atomized iron and steel powders for sintered parts like gears.

Fine copper and silver powders serve as conductors and resistors in microelectronics applications. Metal powders are the feedstock for additive manufacturing methods like 3D printing.

Special alloy powders finds use as chemical catalysts and pigments. Porous stainless steel powder is used for orthopedic bone implants in the biomedical field.

Advantages of Metal Atomization Systems

Some benefits of using metal atomization for powder production:

Advantages of Metal Atomization

BenefitsDetails
Finer powdersMicrometer to nanometer sizes
Narrow size distributionPrecise control over particle size
High purityAvoid contamination from milling
Lower costCheaper than mechanical grinding
Composition controlAlloying possible in melt
Spherical particlesGood flowability
VersatileWide range of alloys atomized

Gas and centrifugal atomization can produce finer metal powders down to 10 microns compared to mechanical milling. The particle size distribution is narrower giving better control.

Since no grinding media is involved, the powder purity is higher. The capital and operating costs are lower than mechanical milling.

Alloying elements can be added in the crucible allowing flexibility in powder composition. Spherical powder particles provide good flowability important for die filling.

Almost any alloy from nitinol to inconel can be atomized with proper control over process parameters.

3D Printing Metal Powders

Limitations of Metal Atomization

Some drawbacks of metal atomization systems are:

Limitations of Metal Atomization

DrawbacksDetails
High melting pointLimited to lower melting metals
Reactive metalsDifficult to atomize reactive metals like titanium, aluminum
Gas pickupAbsorbed gases affect powder quality
Satellite particlesSome larger irregular particles formed
High capital costMajor investment needed for large system

Metals with very high melting points over 1800°C like tungsten, molybdenum are difficult to atomize due to crucible limitations. Reactive metals like titanium, aluminum require vacuum or inert atmosphere.

Gases absorbed during atomization process affect powder characteristics. Some irregular shaped satellite particles are also formed during atomization along with spherical particles.

Large scale metal atomization systems require major capital investment of over $2 million. Operational costs are also relatively high.

Suppliers of Metal Atomization Systems

Some leading global suppliers of metal atomization equipment are:

Metal Atomization System Suppliers

CompanyLocationScale
Phoenix ScientificRockwood, USALab to industrial
Makin Metal PowdersManchester, UKLab to industrial
ASK ChemicalsHilden, GermanyLab to industrial
ZenniZMoscow, RussiaIndustrial
ALD VacuumHanau, GermanyIndustrial

These companies offer gas, centrifugal, vacuum atomization systems ranging from lab/pilot scale 5 kg/hr to large scale 2000 kg/hr capacities. Turnkey systems with melting, atomization and powder handling units are provided.

Atomization systems are priced from $100,000 for lab units to over $2 million for industrial plants based on capacity and features. Location, taxes, transportation etc. also affect pricing.

Installing a Metal Atomization System

Key steps in installing a metal atomization system are:

Metal Atomizer Installation

StageActions
Site preparationLevel concrete floor, install utilities
AssemblyAssemble sub-units like crucible, nozzle section
ConnectionsConnect gas lines, cooling water, ducting
CommissioningTest run empty, leak checks, trial with low capacity
Safety checksInstall emergency stop, fire suppression, alarms
Personnel trainingTrain staff on system operation and maintenance

The equipment is heavy so the site needs to have a level, vibration-free concrete floor. Utilities like cooling water, inert gas, and exhaust ducting need to be connected.

The system is then assembled, aligned,leak tested and initially run empty before actual hot commissioning. Safety systems for emergency shutdown, fire or melt leakage must be operational.

Thorough training of the operating personnel by the vendor is essential for smooth operations.

metal atomization systems

Operating and Maintaining a Metal Atomizer

Key aspects of operating a metal atomization system include:

Metal Atomizer Operation

ActivitiesDetails
Raw material handlingUse proper gloves, containers for metal charge
Crucible cleaningRemove residue, slag by grinding, acid pickling
Crucible liningInspect lining, recoat/replace as needed
Process parametersMaintain proper temperature, pressure, flows
Nozzle conditionInspect nozzles for wear, blockages
Powder handlingEnsure proper containers, transfer procedures
Equipment inspectionCheck seals, connectors, safety systems
MaintenanceSchedule preventive maintenance, repairs

Proper protective gear should be used when handling raw metal pieces to avoid contamination. The melting crucible needs regular cleaning and lining refractory maintenance.

Careful monitoring of process parameters like temperature, pressure and gas flow is important. Nozzles, especially for gas atomization, require inspection and replacement periodically.

The fine powder produced needs careful handling to prevent exposure risks. Regular inspections help spot leaks, damages and ensure all safety systems work. Preventive maintenance should be scheduled to avoid breakdowns.

Choosing a Metal Powder Atomizer Supplier

Key factors in selecting a metal atomization system supplier:

Choosing a Metal Atomizer Supplier

CriteriaConsiderations
Technical expertiseExperience, expert personnel
Range of equipmentLab, pilot, industrial scale systems
Track recordRelevant case studies, client list
CustomizationFlexibility for specific requirements
After-sales serviceInstallation support, maintenance contracts
PriceQuotes fitting budget
ReliabilityBuild quality and proven performance
SafetyMeets all industry safety norms
CertificationISO or other quality certification

Look for an established company with expertise in thermal spray or powder metallurgy industries. They should offer the full range of atomizers from lab prototypes to large scale production.

Request client references and case studies relevant to your specific application. Seek customized solutions for your capacity needs and powder characteristics.

Evaluate after-sales service support like installation supervision, operator training, maintenance contracts etc. Consider pricing but give priority to performance, safety and reliability.

metal atomization systems

Conclusion

Metal atomization is an efficient process for producing clean, spherical fine metal powders from various alloys for advanced applications in aerospace, automotive, additive manufacturing and other industries.

Gas and centrifugal atomization systems consist of metal melting, droplet formation and powder collection sub-units. Careful design is required to obtain desired particle sizes and powder characteristics.

Leading vendors offer standard and customized atomization systems in small to large industrial capacities with suitable after-sales support. Choosing the right supplier and following good operating practices ensures smooth functioning and maximum powder production.

FAQs

Q: What is the typical capacity range of metal atomization systems?

A: Metal atomization systems are available in capacities from 10 kg/hr for lab/pilot scale to over 5000 kg/hr for high volume industrial production. Larger capacities up to 10,000 kg/hr are also possible.

Q: What industries commonly use metal atomization?

A: Key industries using metal atomization include aerospace, automotive, additive manufacturing, powder metallurgy, electronics, and chemical industries. The fine, spherical powders are used to manufacture critical components.

Q: How fine can the powder particle size be made?

A: In gas atomization, powder sizes down to 10 microns can be achieved by optimal design of nozzles, gas pressure and flow rates. Centrifugal atomization typically makes coarser powders over 20 microns in size.

Q: What metals can be atomized?

A: Most engineering metals with melting point below 1800°C can be atomized. Common examples are nickel, iron, cobalt and titanium alloys. Some reactive metals like aluminum and magnesium can also be atomized under controlled conditions.

Q: What gases are used in gas atomization?

A: Nitrogen and argon are most widely used due to their inertness and availability. In some cases oxygen or air is also used but can contaminate the powder.

Q: How are the operating costs of atomization systems?

A: Operating costs are higher than mechanical milling since continuous supply of high pressure gas is needed. Also electrical energy for induction heating and crucible/nozzle maintenance add to costs.

Q: What safety aspects need attention?

A: High temperature metal melts, inert gases under pressure, fine combustible powders require careful handling and safety systems for fire, explosion prevention. Proper operator training is a must.

Q: What maintenance is required for the equipment?

A: Nozzle inspection and replacement, crucible repair/relining, leak checks, cleaning air filters are typical maintenance tasks. Scheduled preventive maintenance minimizes breakdowns.

Q: Can metal alloys be atomized?

A: Yes, metal alloys can be readily atomized by adding the alloying elements like chromium, aluminum, titanium into the melting crucible in precise proportions to obtain the desired composition.

Q: Can metal atomization be done on a small scale?

A: Yes, lab scale atomizers with 1-5 kg capacity melting crucibles are available from suppliers for small batch powder production like R&D purposes. But operating costs per kg are higher.

know more 3D printing processes

Share On

Facebook
Twitter
LinkedIn
WhatsApp
Email

Xmetto Technology Co., LTD is a leading provider of additive manufacturing solutions headquartered in Qingdao, China. Our company specializes in 3D printing equipment and high-performance metal powders for industrial applications.

Inquiry to get best price and customized Solution for your business!

Related Articles