Leverantörer av metallpulver

Innehållsförteckning

Metal powders are widely used across additive manufacturing, metal injection molding and other powder metallurgy applications. This article provides an overview of various metal powders, production methods, properties, specifications, applications, pricing, metal powder supplier as well as advantages and limitations of powder-based technologies.

Översikt of metal powders

Metal powders processed into end-use components offer benefits like:

  • Customized alloys/compositions unattainable via ingot metallurgy
  • Intricate, lightweight geometries through additive manufacturing
  • Net shape fabrication reducing wastage versus subtractive methods
  • Isotropic properties from rapid solidification versus casting

Common metal powders range from stainless steels, tool steels, superalloys to titanium, aluminum, copper and exotic alloys. Production via inert gas atomization, water atomization and plasma rotating electrode process allow tailoring particle size distribution, morphology and microstructure for different applications.

metal powder supplier

Typer av metallpulver

Rostfria stål

Austenitic and martensitic stainless steel powders like 316L, 420, and 17-4PH offer good corrosion resistance and high hardness after heat treatment:

BetygFastigheterTillämpningar
316LExcellent corrosion resistance, great weldability/formabilityPumps, valves, marine hardware
420Hög hårdhet, slitstyrkaCutting tools, bearings
17-4PHHigh strength, moderate corrosion resistance, good toughness after agingAerospace and industrial components

Verktygsstål

Air-hardening tool steels like H13 and D2 provide very high hardness levels after heat treatment:

BetygHardness RangeAnvändningsområden
H1350-55 HRCInjection molds, dies, tooling
P2030-40 HRCFormsprutningsverktyg för plast
D260-62 HRCCutting tools, forming dies

Superlegeringar

Nickel, iron and cobalt-based alloys offer exceptional high temperature strength for extreme environments:

BetygMax Service TempAnvändningsområden
Inconel 718700°CAerospace components and systems
Inconel 625980°CAerospace turbines, petrochemical equipment
Haynes 282870°CJet engine parts, land-based turbines
Kobolt Krom500°CMedical/dental implants

Aluminum & Titanium

Light metals like aluminum and titanium alloys enable lightweight structrual parts combined with good corrosion resistance (Ti) and high strength-to-weight ratio:

BetygAnvändningsområden
AlSi10MgAerospace and automotive components, prototypes
Ti-6Al-4VAerospace structural parts, biomedical implants

Copper & Tungsten

Copper offers high thermal and electrical conductivity while tungsten grades provide extreme hardness and density up to 18 g/cc:

MaterialTillämpningar
KopparHeat sinks, electrodes, welding tips
Tunglegeringar av volframRadiation shielding, vibration damping

Exotic Alloys

Advanced grades include precious metals, refractory metals and rare earth permanent magnets:

BetygSammansättningAnvändningsområden
ElgiloyCo-Cr-Ni + trace elementsMedical devices, fasteners
NitinolNickel-titaniumActuators, cryogenic apps
Neodymium magnetsNd-Fe-BMotors, generators, sensors

These enable specialized electrical, magnetic, thermomechanical and biocompatible properties for niche applications.

Produktionsmetoder

Gas atomization is the primary technique for fabricating defined particle size distributions optimized for additive manufacturing, metal injection molding etc. Water atomization serves cost-driven applications like powder injection molding bushings and filters.

Atomisering av gas

High pressure inert gas (usually argon or nitrogen) sheers off fine molten metal droplets from the melt stream which rapidly solidify into spherical powders ideal for layer-by-layer fusion. Desired chemistry and microstructure are built into the alloy before atomization. This facilitates high powder purity and consistent composition tailored to part functionality.

Atomisering av vatten

In this process, molten metal stream is disintegrated by high velocity water jets into fine particles which cool rapidly to form irregular shapes. It is a cheaper process useful for high volume applications where loose powder characteristics are acceptable.

Rotating Electrode Process

In this method, an electric arc melts a rotating bar feeding into a plasma torch. The evaporated metal condenses in an inert gas atmosphere and the spinning molten particles form spherical powder. It offers extremely fine control over particle size distribution for niche applications.

Properties and Specifications

Key powder characteristics like particle shape, size distribution, flow rate and apparent density govern performance in downstream processes like additive manufacturing:

ParameterTypiskt intervallBetydelse
Partikelns formSpherical preferredInfluences packing density, flowability, spreadability during printing
Storleksfördelning15-45 μm typisktImpacts min feature resolution, surface finish, density
Flödeshastighet25-40 s/50gIndicates powder fluidization, spreadability, reduced agglomeration
Skenbar densitetUp to 65% of theoreticalNeeded for high densification during sintering or melting
Återstående kol< 0.01%Determines oxygen/nitrogen pickup affecting mechanicals

Material test reports from reputed metal powder suppliers showcase detailed characterization data to choose the right grade for intended application and process.

Application Areas

Additiv tillverkning

  • Aerospace components – blades, impellers, engine sections
  • Medical implants – orthopedic/dental, surgical tools
  • Automotive – valves, pistons, manifold
  • Industrial tooling – cutting tools, dies, molds

Formsprutning av metall

  • Small precision parts – gears, nozzles, fasteners
  • Orthopedic screws, knee/hip implants
  • Automotive mechanisms – locks, pulleys

Beläggningar för termisk sprutning

  • Wear resistant layers – pump shafts, rollers
  • Corrosion protection – valves, pipes, vessels

Powder Press and Sinter

  • Self-lubricating bearings
  • Permanent magnets
  • Structural parts via cold/hot isostatic pressing

Tailored powder characteristics enable diverse applications leveraging net shape or near-net shape fabrication.

metal powder supplier

Leading European, Asian and North American suppliers cater to metal powder demand across industries and geographies.

FöretagMaterialKapacitetMarkets
SandvikStainless, tool steels, superalloys210,000 MTEuropa, Asien
GKNStainless steels, superalloys, Ti alloys170,000 MTEuropa, Nordamerika
PraxairTi, Ni, Co alloys110,000 MTNorth/South America
HoganasTool steels, stainless, low alloy steels100,000 MTEuropa, Asien
Rio Tinto MetallpulverAluminum, Ti, intermetallic grades75,000 MTGlobalt

These companies offer wide capability in atomization processes matched by rigorous in-house quality control on powder characteristics and cleanliness backed by certified test reports on chemistry, particle size distribution, microstructure and batch consistency.

Application experts help customize existing alloys or engineer new grades tailored to customer mechanical property, geometry and functionality needs from prototyping to commercial scale metal powder orders.

Metal Powder Pricing

MaterialPrisintervall
Stainless steel 316L$5-20/kg
Maraging steel$30-60/kg
Tool steel H13$12-30/kg
Inconel 718$50-150/kg
Titan Ti-6Al-4V$100-500/kg

Prices depend significantly on order volume, quality grade (commercial, aircraft, medical etc.), regional demand dynamics and extent of certification. Large OEM approved customers get much lower pricing of even $30-40/kg for common aerospace superalloys.

Pros and Cons of Powder Metallurgy

Fördelar

  • Custom alloys/compositions outside conventional ingot metallurgy range
  • Complex geometries from additive manufacturing with reduced assembly
  • Near net shape fabrication with lower raw material wastage
  • Enhanced mechanical properties from rapid solidification

Begränsningar

  • Generally slower production rates than casting or forging
  • Additional steps like CIP/HIP needed in AM to improve density
  • Reuse of powder can result in changed characteristics
  • Requires handling systems to recover/recycle unused powder
metal powder supplier

Sammanfattning

In summary, key metal powder types span stainless, tool and superalloys plus aluminum/titanium used across additive manufacturing, metal injection molding and thermal spray coatings. Gas, water and plasma atomization enable tailored powder size distribution, shape and microstructure. Leading global suppliers certified quality matched to application requirements in terms of chemistry, particle characteristics and cleanliness. For prototyping or volume production, matching the proper metal powder type to functionality, process and part performance needs drives overall fabrication success.

Vanliga frågor

Hur tillverkas metallpulver?

Most commercial powders rely on inert gas atomization or water atomization processes to generate fine spherical particles with tightly controlled size distribution.

What are the main types of metal powders?

Common classifications include stainless steels, tool steels, superalloys, aluminum/titanium alloys, tungsten heavy alloys and precious metals including exotics like Elgiloy, Nitinol etc.

What factors affect metal powder pricing?

Prices depend significantly on volume, extent of certification, regional demand dynamics, raw material costs and alloy composition – exotic superalloys can cost 5-10X stainless steel grades per kilogram.

What are typical sizes for metal powders?

A standard distribution for additive manufacturing lies between 15-45 microns. Water atomized grades can range from 45-150 μm used mainly for pressing and sintering.

What governs choice of metal powders?

Key considerations are part functionality (operating temperature, stresses etc.), fabrication method (casting, MIM, AM), cost targets, extent of post processing and availability in desired product form.

How are metal powders characterized and specified?

Typical parameters provided in material test reports cover powder composition, particle size distribution, morphology (spherical/irregular), flow characteristics, apparent density and residual impurity levels. These govern fitness for service.

Are there standards for metal powders?

ASTM, ASME, MPIF, ISO and equivalent national/regional standards help define specifications for common grades in terms of chemistry, manufacture, sampling procedures, testing methodology, supply condition and quality assurance.

What precautions are necessary when handling metal powders?

Key risks involve flammability and explosion hazards. Inert gas glove boxes, enclosed conveyor/transport systems, grounding, antistatic coatings help safe powder handling alongwith personal protective gear use during extraction and transfer.

få veta mer om 3D-utskriftsprocesser

Dela på

Facebook
Twitter
LinkedIn
WhatsApp
E-post

Xmetto Technology Co, LTD är en ledande leverantör av lösningar för additiv tillverkning med huvudkontor i Qingdao, Kina. Vårt företag är specialiserat på 3D-utskriftsutrustning och högpresterande metallpulver för industriella tillämpningar.

Förfrågan för att få bästa pris och anpassad lösning för ditt företag!

Relaterade artiklar